a2 United States Patent

Dearing et al.

US009454501B2

10) Patent No.: US 9,454,501 B2
45) Date of Patent: Sep. 27,2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

INTELLIGENT PATCH PANEL PORT
MONITORING SYSTEM

Applicant: Leviton Manufacturing Co., Inc.,
Melville, NY (US)

Inventors: Mark Edward Dearing, Bothell, WA
(US); Jason Erickson, Bothell, WA
(US); Jeff Storm, Bothell, WA (US);
Jay Treptow, Bothell, WA (US); Hua
Wang, Bothell, WA (US)

Assignee: LEVITON MANUFACTURING CO.,
INC., Melville, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/319,903

Filed: Jun. 30, 2014

Prior Publication Data

US 2015/0039788 Al Feb. 5, 2015

Related U.S. Application Data

Provisional application No. 61/860,195, filed on Jul.
30, 2013.

Int. CL.

GO6F 13/20 (2006.01)

HO4L 12/28 (2006.01)

HOIR 13/66 (2006.01)

HOIR 29/00 (2006.01)

GO6F 3/00 (2006.01)

GO6F 13/38 (2006.01)

U.S. CL

CPC ........... GO6F 13/385 (2013.01); GOG6F 13/20

(2013.01)

106

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0148279 Al* 7/2006 German ... HO1R 13/465
439/49

2007/0117444 A1* 5/2007 Caveney ............ HO04Q 1/136
439/404

2007/0238343 Al* 10/2007 Velleca ................ HO1R 9/2475
439/188

2010/0267274 Al* 10/2010 McNally ............... HO04Q 1/136
439/488

2011/0043371 Al1* 2/2011 German ... HO04Q 1/136
340/815.45

2011/0141943 Al1* 6/2011 Shifris ..o HO04Q 1/136
370/254

2013/0064249 Al* 3/2013 Shar ... HO04Q 1/136
439/404

2015/0236873 Al* 82015 Austermann, III . HO4L 25/0278
375/220

* cited by examiner

Primary Examiner — David E Martinez
(74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
LLP

(57) ABSTRACT

A universal serial bus (USB) sensor bar and a device
manager are configured to intelligently monitor one or more
patch panels. The USB sensor bar comprises an array of
sensors configured to read identification data from memory
devices affixed to respective cables plugged into ports of a
patch panel. The USB sensor bar converts the identification
data to a USB protocol and sends the data to a device
manager over a USB bus. The device manager uses the
received information to document a network architecture,
generate web-based interfaces that render configuration and
status information for the network, and generate alarms or
notifications in response to detection of defined network
conditions.

20 Claims, 38 Drawing Sheets

214

USB SENSOR BAR

212
“1-WIRE
L cHp

208

12C TO 1-WIRE
CONVERTOR

12C LED
DRIVER v




US 9,454,501 B2

Sheet 1 of 38

Sep. 27, 2016

U.S. Patent

| B ] K |
. . . | NOILVDI'1ddV
: . . 7 asm JINNS .
L S Y
4! N\oz1 Nyl
311
e ﬂ diHD * dIHO 0 dIHD
LAMOWHIN . | AJOWHN /| AOWHIN N\ g}
...... L i ]

m....:........... ..... m ...... W........:..

HAOVNVYVIN
ﬁ AV HOSNAS SN ADIAFA
=907
| \-z01
"TEANVd HDOLVd W
911"
ASv4EVIVA

oo~|\\



US 9,454,501 B2

Sheet 2 of 38

Sep. 27, 2016

U.S. Patent

¢OM

HHATIA
ad1 ot

012

HOLIIANOD
HAIM-1T OL D071

802

A TIOWLNOD

40d1dg
TVIddS
0Ol d80

AVE JOSNAS €51

901




US 9,454,501 B2

Sheet 3 of 38

Sep. 27, 2016

U.S. Patent

£ O

HATHK
GO i S g :
““““““““““ "
»
&
PO i , . [ S
W DORS | 4 M
» EHRIELY §
o i I % m
R
5

*.

agy *

e

L
£
k4




U.S. Patent

Sep. 27, 2016

Sheet 4 of 38

US 9,454,501 B2

INITIALIZE AND READ |/~ 402 5400
INITIAL 1-WIRE CHIP
SERIAL NUMBER
Y
'
i STORE PORT 406
READ PORT I-WIRE | 404 | (RRAYAS =17
CHIP SERIAL s 1-WIRE PORT
NUMBERS CONFIGI‘IRATION
{ A
408 e 10
} PORT . YES UPDATE PORT |
~ CHANGES? -~ CONFIGURATION
1\0]
412\ +
NO_ ~INCOMING .
LOMMAND‘?/
YES
414 ~ 416
P \ GET/SET . YES SET“POST [
< I-WIREID =1l CONFIGURATION" =
“~COMMAND?2-" FLAG
NO
418\ N Y 420
LED SET l’le ~YES SEND 12C LED
> TYPE COMMANQ?, COMMANDS
\l;No
422
> 1S “POST "
< CONFIGURATION™
"~ FLAG SET? -~
{ YES
SEND PORT 424 FIG. 4
~ 5 Tl /_
CONFIGUATION

OUT USB PORT




US 9,454,501 B2

Sheet 5 of 38

Sep. 27, 2016

U.S. Patent

SO

d1H 9801 40
dVvH JOSNHS 451 OL

HHOMILIN OL

s

AIVIS HAOMLAN

81¢
asm

91¢
JdAINS

1489
ddV ddM

01¢

SNOILLONOA JIDOVNVIN dDIAHA

80S

Ndd d9¥0.LINOW

90¢
AVH YOSNHS

v0%

TIA SHTINIDVANNVYVIA

<08

YA TTIOYLINOD LSOH dSi1

HIADVNVIA HDIATA

/
N\-201




US 9,454,501 B2

Sheet 6 of 38

Sep. 27, 2016

U.S. Patent

9 OI4

\NN@

AASMOUY
qaM
¥ASN ANg

y
% F

- DIN
OVNVIL ADIAAG ©

UF

el

HHOVNVIA
NOILO3TIOD
HOIARA

SITAI

NO

SADIAYES
AN

INHLSAS
ONILLVIHdO

g

!

NOILLVOI'lddV

M

JHAYHES

09

gam

ASvdvivd

e,

i,

DIANOD  beg]
O

=~ HADVNVIA IDIAAA




US 9,454,501 B2

Sheet 7 of 38

Sep. 27, 2016

U.S. Patent

L™OIA

I3ZBUBIAUONIIN[OYINAI(
<<WNSASQNS>>>

> I} [ \

<<SABN>> |
L <S>

. ()o91A10SPOISO IO+

(P3IATOSPaISOHN (-

INAIISPIAISOH YY) 19014135 d A [ 901A0(TI0Y30

NAIISN A 901AB8SNAd
«<<SSB[O uonRIuAwRdu >

<<8I8SN>>

()o01A10GPOISOH [PUBJYITRd+

INAIISRUL JYIIB J::001ATS[RURJYIE]
<<$SBJO uonenaw[dus>>

SIOYIOOBIU]- sNddoen]- ‘ PuEgyMEglonuL-
QOTATISPAISOHIIIA(TH
RI8UI0)- s$dd- sppuedyored- (29132 §PAISOHAOIAAC
81O (AA0051(]+
NAIISIAA LA IO o0taagsmd (g ARSI L P smd(d AINARSSIIUBJYIIR Y 00143 smd(]
<< WUBISASGNS>> <<UI3}SA5qNS>> <<CTDISASANS:> dMmsvgsmdq
_ <<8SEPD uoneudwWRTdW>>
Y- snad- spouRJuaIed-
sndd- sadcy- smdg-
A SMA( 152017 U() $I01ATIG GO
smdq- <<TWDISASQS>>

<<MNSASGNS>>

LSHMUOIPNIOAIOJIdVASM

[

T N

<< 8O8N>>

SIIA(] UO SIDIAIIS GO

asmioeg-

I

sead(q-



US 9,454,501 B2

Sheet 8 of 38

Sep. 27, 2016

U.S. Patent

8 "DI4 22142 (quipI]: 103eUEIA HOIOS[0)) 301AS(]

<<QIBLIDUI>>>

NAJIMTGS): 1eBeUejA; BOBA0) 221A2(T | | Puedyare JIeniiiA i reSeusjy Tondefjo)) aoiaeQg

<<SSB[D HonRuRwodu> >

<<S5e10 uoneuowydwn >

PueJualegaiiA s 1oSeURy UONIBIO)) 291A(
<<$$B[3 voneITowopdw>

L v

<<AORIINUL>>

ADIDUD (T JHPIT--ITEUR UOOI]0)) 901A3(T

7\
A

JZIDUDPIIUD JYINIDJ WP I2TCUBH UOTIIS[O)) 901Ad(]

<<OOBLIONUI >

Ay

i

JISeuB N ;105 ruRpy HONOR[[O)) 20143

JAGeuePUR JUNE S I0TeUR TONOS[[O)) 951a3(]

808 908 ,
Y Y
JIBRUBIAIIIAIUIPI]: 1T RURIA UONIDJJ]0)) IDIA(]
._MOW |\ AA@U&MB&VV
Aé,&ma._vv
IOTCUEIAJUON)II[0,)IITAS(] - JOGCUCN BOTIOR|[0.) S0TA(] |
708 _/ <<cSSE[O uonRjuowidiu >



US 9,454,501 B2

Sheet 9 of 38

Sep. 27, 2016

U.S. Patent

6 "O11 s B SADIATA
/ JELIANNOD
. / UADVNVIN TI0d
i N ﬁ TANVd
L HOIVA
$AD1AZA \, mmﬁcmw W
TILIINNOD R | AN .
104 | AJALADIAAG e el SAVAL
N\ ¥HHLO /S -
S e / ' YISMOUE €I
T STIVD STIVD m,\ 19 N mmm R
IdV 14y L AV LIOS WIDA
| INIOV JANS YIDVNVYIN JWNS
STIVD /! ‘
LT T T 1dv S SILSANOAY
SINFAT a0
IDIAEA m [ L SNOILVYEdO
WIHIO ) qqyn | SADVNVIN HOIAYES 994
J gy Ly NOLLDATIOD |/
WIDVNVIN R S e e J/ o
4D1AAA ¥AHLO ; o .
SHADIATA : SINAAT . \
: JOIAYAS €M / 819 )
NO STIIAYES g9M |
SNOTLVEILO i SHIAZd
OIAMAS gupm  SNOILVYIdO . NO SAIIAYAS | SINGAT
HOIAYES gdm aam TOTAATS FAM
0O/1 94 AN .
Hmw@m%m/d\ N SNOILVYIdO
_ / 19 | DTAYES M
AISMOFE | NOILVOITddV | ASVAVIVA
g1 LooogEs ) YAANIS TOS ADIAHA IHEOW 4O
qSNOdSTE - S/ T TAVMLIOS
dLLH S < WIDA YTWASNOD
AANAS g9
0N 9a




US 9,454,501 B2

Sheet 10 of 38

Sep. 27, 2016

U.S. Patent

01 "OIA

IdVH JOSNHS SN

dVH JOSNHS SN

dVH JOSNHS SN

dVH JOSNHS SN

001~

@OS\

dsn
dsn
dsn
dsn
N\-z001
UAODVNVIN ADIAAA

=701



US 9,454,501 B2

Sheet 11 of 38

Sep. 27, 2016

U.S. Patent

11 "Old

AVH JOSNHS dSN

AVE JOSNHS dSN

AVd JOSNAHS SN

AvVd JOSNAS dS11

dvVd dOSNAS dSN

d0H 98N

AvVd JOSNHS SN

Avd JOSNIS S

AVd JOSNIS 95N

$001-"

dNH SN

N\-p01

gS01
gasn

001
ATOVNVIN HOTATA

=201



US 9,454,501 B2

Sheet 12 of 38

Sep. 27, 2016

U.S. Patent

(AR

AV JOSNHS 985N

AvE JOSNAS dSN

AVd JOSNHS d8N

dvd JOSNHS 8N

gNH
gsn

AV JOSNAS S0

VL JOSNHS SN

AVH JOSNAS 980

AV JOSNAS SN

Avd JOSNHS 980

AVE JOSNAS 95N

AVd JOSNAS dSN

VA JOSNHS dSN

p001-~"

anH
€SN

AV JOSNHES SN

40NH
gsn

AVE JOSNAS dSN

dvd JOSNAS dSN

AVd JOSNAS dSNn

7011

dnH
asn

401

asn
qasn
<001
HIDVNVIA IDIAAA

N\-201



US 9,454,501 B2

Sheet 13 of 38

Sep. 27, 2016

U.S. Patent

1 "OId

h Ndd d990LINOI 950N

ﬁ AVH JOSNHES 480

d1H
qsSn

IDVNVIN
HOIAHA




US 9,454,501 B2

Sheet 14 of 38

Sep. 27, 2016

U.S. Patent

el > ou

vl Old

|

|

_ SYOSNAS

_ ALIQIANH

_ /TINLYYIdNAL
_ T

| 21

|

|

_ YAATIA

| aginu

|

_ 011~

“ ANIONA

| INIWNTINSVAN
_ MAMOd

|

| Sov1-

|

HDHANY
TVHIES
Ol gsn

Ndd ATYOLINOI 950 "

\-zog1



US 9,454,501 B2

Sheet 15 of 38

Sep. 27, 2016

U.S. Patent

ST 'O
Aty
i [ ] [ ™ —— [~ ] [ ™ — [ ]
\ T-TIST
4
80S 1 /82
01S1
0051 —"
p0S1 -
8.2



US 9,454,501 B2

Sheet 16 of 38

Sep. 27, 2016

U.S. Patent

0161

91 "OIA

N@mﬁ/ vIst

y AN

/32

3051~

wof‘\ /ooﬁ



U.S. Patent Sep. 27, 2016 Sheet 17 of 38 US 9,454,501 B2

}thiﬁﬁﬁ
3
9 27

FIG. 17
FI1G. 18

156&”}

%2

B




U.S. Patent Sep. 27, 2016 Sheet 18 of 38 US 9,454,501 B2

FIG. 19




U.S. Patent Sep. 27, 2016 Sheet 19 of 38 US 9,454,501 B2




U.S. Patent Sep. 27, 2016 Sheet 20 of 38 US 9,454,501 B2




U.S. Patent Sep. 27, 2016 Sheet 21 of 38 US 9,454,501 B2




US 9,454,501 B2

Sheet 22 of 38

Sep. 27, 2016

U.S. Patent




US 9,454,501 B2

Sheet 23 of 38

Sep. 27, 2016

U.S. Patent

¥C Ol

9061

mhn,r..ff.




US 9,454,501 B2

Sheet 24 of 38

Sep. 27, 2016

U.S. Patent

FIG. 25a

FIG. 25b



U.S. Patent Sep. 27, 2016 Sheet 25 of 38 US 9,454,501 B2

7 Nzs08 FIG. 25¢



U.S. Patent Sep. 27, 2016 Sheet 26 of 38 US 9,454,501 B2

7 FIG. 26



US 9,454,501 B2

Sheet 27 of 38

Sep. 27, 2016

U.S. Patent

A

N

enkrsssrsssrrisirs.

FIG. 27



US 9,454,501 B2

Sheet 28 of 38

Sep. 27, 2016

U.S. Patent

S
3

8C O




U.S. Patent Sep. 27, 2016 Sheet 29 of 38 US 9,454,501 B2

FIG. 29




US 9,454,501 B2

Sheet 30 of 38

Sep. 27, 2016

U.S. Patent

FIG. 30a
FIG. 30b



US 9,454,501 B2

Sheet 31 of 38

Sep. 27, 2016

U.S. Patent

RO0OL

1€ "Old

", " .

i o
. e :
A

$O0E
o108”




US 9,454,501 B2

Sheet 32 of 38

Sep. 27, 2016

U.S. Patent

(G |

W

o,

,ffi“'ff"f‘ ‘

g ¥ Ty T

.
/ o
ﬂ \§Hﬂyx
/ : =
SN
7 TN

L miN|

...... N

D

M\S

x\

) .

H LIS ¢

%

3 ;

{ e ) 22

. [ & & .,.,.u,.,
S

x

“x

3
PSS
v ,‘\\ax \\ m\ \\ r \m

o




U.S. Patent Sep. 27, 2016 Sheet 33 of 38 US 9,454,501 B2

o

R EE

N e
¥ T . <o N
& e B - H
Aoy N . . {
3 . 3 3
3 3 N
> g o o N
> A T R N
) b, o o N
3 . .-,r“"} 3
i S s N
3 S s N
i B g - i
§ gy < 3
E NI o
& % iy - £
: 3 N
3342 N " o i ;
. T A H
e
. o
’ H
¥ 3
3 s H
&

FIG. 33b



US 9,454,501 B2

Sheet 34 of 38

Sep. 27, 2016

U.S. Patent




U.S. Patent

Sep. 27, 2016 Sheet 35 of 38 US 9,454,501 B2

READ CABLE IDENTIFICATION DATA

FROM A MEMORY ATTACHED TO A |~3502

CABLE PLUG INSERTED INTO A PATCH
PANEL PORT

CONVERT IDENTIFICATION DATA TO A |~3504
USB PROTOCOL

SEND CONVERTED IDENTIFICATION 3506
DATA TO A DEVICE MANAGER OVER A 4
USB BUS

FI1G. 35



U.S. Patent Sep. 27, 2016 Sheet 36 of 38

7 V‘M‘ Amm\\\
‘\“\:START.//

US 9,454,501 B2

T '/—3600
RECEIVE CABLE IDENTIFICATION DATA| 3602
FROM A USB SENSOR BAR OVER A USB |
BUS
UPDATE NETWORK INFRASTRUCTURE | _3404
DOCUMENTATION BASED ONTHE [
CABLE IDENTIFICATION DATA
T 3606
NO - ASSOCIATED
Gury
i YES
RENDER NETWORK INFRASTRUCTION | 3408
DOCUMENTATION ON GRAPHICAL |~
USER INTERFACE
Y
T 3610
NO -7 ALARM ™
. CONDITION? -
l YES
GENERATE AND DELIVER ALARM OR
NOTIFICATION BASED ON THE 3612
UPDATED NETWORK INFRASTRUCTURE
DOCUMENTATION
v FIG. 36
{ END



U.S. Patent Sep. 27, 2016 Sheet 37 of 38 US 9,454,501 B2

. /*.3728
i | Operating System / 3710
|
L — 3730
t | Applications |
‘ taevecroccesancnsnnccrororonanaand
oo Vi T
| : : Modules !
N B St
| b — 3734
b
| p 1Data 3712
| ¥
| 5 — 3114
! | Processing [} 3742
' 8
: § || Output e OLleUt
: - Adapter(s) Device(s)
|
L __1y/ System - 3738 - 3740
I Memory
: - N Interface ]< > Input
[ Volatile R
: 3720 Port(s) Device(s)
| Non Volatile Ny
| 3736
| 3722 N 3018
. I 3750
: Interface & [ Network
: N 3726 Communication }j Interface
| Connection(s) .
: N 3748
[P S Disk v
Storage Remote
Computer(s)
3724
Memory

Storage

F1G. 37



U.S. Patent Sep. 27, 2016 Sheet 38 of 38 US 9,454,501 B2

3800
[7
/ 3802 3804 N
CLIENT(S) SERVER(S)
A COMMUNICATION A
FRAMEWORK

3808 3810

v L Z

3806

CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 38



US 9,454,501 B2

1
INTELLIGENT PATCH PANEL PORT
MONITORING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 61/860,195, filed on Jul. 30, 2013, and
entitled “INTELLIGENT PATCH PANEL PORT MONI-
TORING SYSTEM,” the entirety of which is incorporated
by reference.

TECHNICAL FIELD

The disclosed subject matter relates generally to moni-
toring of patch panels and, for example, to an intelligent
patch panel port monitoring system that includes a universal
serial bus (USB) sensor bar and a USB device manager that
documents a network architecture based on data received
from the sensor bar

BACKGROUND

Patch panels are widely used to manage network cable
connections between networked devices and/or network
infrastructure equipment. Typically, incoming and outgoing
network cables are affixed to the back side of the patch
panel, with each cable wired to a respective port located on
the front face of the panel. Connections between the net-
worked devices can then be managed by connecting selected
ports on the front of the patch panel together using patch
cables. Patch panels allow a technician to easily reroute,
isolate, segment, or reconfigure physical networks from a
single location.

While conventional patch panels can conveniently orga-
nize network connections at a single location and facilitate
flexible re-arrangement and expansion of network connec-
tions, unmonitored patch panels require a network admin-
istrator or technician to be present at the panel in order to
determine, by visual inspection, which ports and associated
network branches are connected together. Tracking and
documenting these network connections can be a laborious
undertaking. Moreover, network reconfigurations made by a
technician at the patch panel can easily go undocumented,
requiring other technicians to visually inspect the patch
panel connections in order to determine how the connections
have been altered.

The above-described deficiencies of conventional patch
panel systems are merely intended to provide an overview of
some of the problems of current technology, and are not
intended to be exhaustive. Other problems with the state of
the art, and corresponding benefits of some of the various
non-limiting embodiments described herein, may become
further apparent upon review of the following detailed
description.

SUMMARY

The following presents a simplified summary of the
disclosed subject matter in order to provide a basic under-
standing of some aspects of the various embodiments. This
summary is not an extensive overview of the various
embodiments. It is intended neither to identify key or critical
elements of the various embodiments nor to delineate the
scope of the various embodiments. Its sole purpose is to

10

15

20

25

30

35

40

45

50

55

60

65

2

present some concepts of the disclosure in a streamlined
form as a prelude to the more detailed description that is
presented later.

Various embodiments relate to an intelligent patch panel
port monitoring system that facilitates accurate remote
monitoring of connectivity statuses of a network infrastruc-
ture. In one or more embodiments, the system can comprise
a USB sensor bar located on or within a patch panel. The
USB sensor bar contains port sensing technology that can
read patch cable identification data from cable plugs inserted
into respective ports of the patch panel (e.g., from a 1-wire
chip or other memory mounted on the plug). The sensor bar
can deliver the patch cable identification data to a device
manager via a USB connection. Based on information
received from the USB sensor bar, the device manager can
document the network architecture and provide status infor-
mation for the network. For example, some embodiments of
the device manager can generate a graphical user interface
that renders substantially real-time connectivity status infor-
mation for the network (e.g., identification of which ports/
devices are connected together, statuses of the respective
devices, network diagrams, etc.). In some embodiments, the
device manager can include a web server that securely
publishes the user interface to the Internet, allowing the
network statuses to be viewed remotely. The device manager
can leverage the information provided by the USB sensor
bar to document a user’s network architecture, generate
alarms and/or notifications in response to defined events
(e.g., connections, disconnections, etc.), or perform other
tasks to be described in more detail herein.

In one or more embodiments, the USB sensor bar can be
an integrated component of the patch panel. In other
embodiments, the USB sensor bar can comprise a retrofit-
table overlay panel that mounts to the front of a conventional
patch panel, thereby converting a standard copper patch
panel or fiber enclosure to an intelligent panel/enclosure that
can be monitored by the device manager.

To the accomplishment of the foregoing and related ends,
the disclosed subject matter, then, comprises one or more of
the features hereinafter more fully described. The following
description and the annexed drawings set forth in detail
certain illustrative aspects of the subject matter. However,
these aspects are indicative of but a few of the various ways
in which the principles of the subject matter can be
employed. Other aspects, advantages, and novel features of
the disclosed subject matter will become apparent from the
following detailed description when considered in conjunc-
tion with the drawings. It will also be appreciated that the
detailed description may include additional or alternative
embodiments beyond those described in this summary.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates a general overview of an intelligent
patch panel port monitoring system.

FIG. 2 illustrates functional components of an example
USB sensor bar.

FIG. 3 illustrates an example 8-channel multiplexor
capable of performing conversion between 12C and 1-wire
protocol.

FIG. 4 illustrates an example method for reading of 1-wire
chip identifiers and processing of device manger commands
by a USB sensor bar.

FIG. 5 illustrates a number of general functional compo-
nents of an example device manager.

FIG. 6 illustrates system components comprising an
example device manager.



US 9,454,501 B2

3

FIG. 7 illustrates a unified modeling language (UML)
depiction of an example Web Services for Devices (WSD)
agent that can be implemented on a USB device manager.

FIG. 8 illustrates a UML depiction of a device collection
manager abstract factory that can be implemented on a
device manager.

FIG. 9 is a flow diagram illustrating an exemplary flow of
data through the various system components of a device
manager.

FIG. 10 illustrates an example configuration wherein a
number of USB sensor bars are directly connected to USB
ports of a device manager.

FIG. 11 illustrates an example configuration that utilizes
USB hubs to increase the number of USB sensor bars that
can be connected to a device manager.

FIG. 12 illustrates a configuration that further increases
the number of USB sensor bars that can be connected to a
device manager.

FIG. 13 illustrates a patch panel monitoring system that
includes a monitored powered distribution unit on a USB
bus.

FIG. 14 illustrates a number of functional components of
a monitored USB-capable power distribution unit.

FIG. 15 illustrates an example retrofittable USB sensor
bar overlay that can be mounted over a port array of a patch
panel.

FIG. 16 depicts a retrofittable USB sensor bar overlay
mounted to the front of a patch panel.

FIG. 17 illustrates an example retrofittable USB sensor
bar for a copper patch panel.

FIG. 18 illustrates an example retrofittable USB sensor
bar for a fiber enclosure.

FIG. 19 illustrates a portion of a printed circuit board
comprising a USB sensor bar, and a corresponding portion
of an overlay panel.

FIG. 20 illustrates a printed circuit board containing
sensing circuitry mounted inside an overlay panel.

FIG. 21 is an exploded view of an example retrofittable
1-wire chip holder assembly that is compatible with a USB
sensor bar.

FIG. 22 illustrates an assembled 1-wire chip holder.

FIG. 23 illustrates an electrical connection between con-
tact pads of a 1-wire chip and sensing contacts of a USB
sensor bar.

FIG. 24 is a cross-section view of a patch cable plugged
into a patch panel fitted with a USB sensor bar overlay.

FIG. 25a is an exploded view of an example retrofittable
1-wire chip holder assembly for a copper patch cable.

FIG. 25b illustrates an assembled 1-wire chip holder for
a copper patch cable using a first orientation of a 1-wire
memory chip.

FIG. 25¢ illustrates an assembled 1-wire chip holder for
a copper patch cable using a second orientation of a 1-wire
memory chip.

FIG. 26 illustrates a printed circuit board comprising
spring contacts for reading cable identification data from a
1-wire memory chip attached to a cable plug.

FIG. 27 illustrates an electrical interfacing between spring
contacts of a printed circuit board and a 1-wire memory chip
attached to a copper patch cable plugged into a patch panel
port.

FIG. 28 is a side view of a copper patch cable fitted with
a l-wire chip holder assembly and plugged into a patch
panel port fitted with a USB sensor bar overlay.

FIG. 29 is a photographic view of an intelligent patch
cable plugged into a patch panel that has been fitted with a
USB sensor bar overlay.

15

30

35

40

45

4

FIG. 30a is an exploded view of an example retrofittable
1-wire chip holder assembly for a fiber cable.

FIG. 305 illustrates an assembled 1-wire chip holder for
a fiber cable.

FIG. 31 illustrates an electrical interfacing between spring
contacts of a printed circuit board and a 1-wire memory chip
attached to a fiber cable plugged into a fiber enclosure port.

FIG. 32 is a side view of a fiber cable fitted with a 1-wire
chip holder assembly and plugged into a fiber enclosure port
fitted with a USB sensor bar overlay.

FIG. 33a is an exploded view of a 1-wire chip holder
assembly for a copper patch cable that provides physical
port security.

FIG. 335 illustrates an assembled 1-wire chip holder for
a copper patch cable that provides physical port security.

FIG. 34 illustrates an assembled 1-wire chip holder for a
fiber cable that provides physical port security.

FIG. 35 is a flowchart of an example methodology for
collecting network infrastructure data.

FIG. 36 is a flowchart of an example methodology for
receiving and processing cable identification data from a
USB sensor bar.

FIG. 37 is an example computing environment.

FIG. 38 is an example networking environment.

DETAILED DESCRIPTION

The subject disclosure is now described with reference to
the drawings wherein like reference numerals are used to
refer to like elements throughout. In the following descrip-
tion, for purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of
the subject disclosure. It may be evident, however, that the
subject disclosure may be practiced without these specific
details. In other instances, well-known structures and
devices are shown in block diagram form in order to
facilitate describing the subject disclosure.

As used in the subject specification and drawings, the

terms “object,” “module,” “interface,” “component,” “sys-
tem,” “platform,” “engine,” “selector,” “manager,” “unit,”
“store,” “network,” “generator” and the like are intended to

refer to a computer-related entity or an entity related to, or
that is part of, an operational machine or apparatus with a
specific functionality; such entities can be either hardware,
a combination of hardware and firmware, firmware, a com-
bination of hardware and software, software, or software in
execution. In addition, entities identified through the fore-
going terms are herein generically referred to as “functional
elements.” As an example, a component can be, but is not
limited to being, a process running on a processor, a pro-
cessor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a server and the server can be a
component. One or more components may reside within a
process and/or thread of execution and a component may be
localized on one computer and/or distributed between two or
more computers. Also, these components can execute from
various computer-readable storage media having various
data structures stored thereon. The components may com-
municate via local and/or remote processes such as in
accordance with a signal having one or more data packets
(e.g., data from one component interacting with another
component in a local system, distributed system, and/or
across a network such as the Internet with other systems via
the signal). As an example, a component can be an apparatus
with specific functionality provided by mechanical parts
operated by electric or electronic circuitry, which is operated



US 9,454,501 B2

5

by software, or firmware application executed by a proces-
sor, wherein the processor can be internal or external to the
apparatus and executes at least a part of the software or
firmware application. As another example, a component can
be an apparatus that provides specific functionality through
electronic components without mechanical parts, the elec-
tronic components can include a processor therein to execute
software or firmware that confers at least in part the func-
tionality of the electronic components. Interface(s) can
include input/output (1/0) components as well as associated
processor(s), application(s), or API (Application Program
Interface) component(s). While examples presented herein-
above are directed to a component, the exemplified features
or aspects also apply to object, module, interface, system,
platform, engine, selector, manager, unit, store, network, and
the like.

FIG. 1 provides a general overview of an intelligent patch
panel port monitoring system 100 according to one or more
embodiments. Monitoring system 100 comprises a USB
sensor bar 106 incorporated as part of a patch panel 116. As
will be described in more detail infra, USB sensor bar 106
can be provided as a pre-integrated component of an intel-
ligent patch panel 116. Alternatively, patch panel 116 may be
a standard copper patch panel or fiber optic enclosure, and
USB sensor bar 106 can be provided as a modular compo-
nent that mounts as an overlay on the front of patch panel
116 or an equivalent fiber optic enclosure. In this way, patch
panel 116 can be converted to an intelligent panel capable of
reading identification data from memory chips 108 (e.g.,
1-wire chips or other storage media) attached to the plugs of
respective patch cords 118. When a patch cord or port
blocker plug outfitted with a memory chip 108 is inserted
into a port of patch panel 116, a sensing circuit on the USB
sensor bar 106 reads the identification information from the
memory chip 108 on the plug and thus identifies the plug and
its location on the panel.

USB sensor bar 106 interfaces with a device manager 102
via a USB connection, either directly or via a USB hub 104.
Device manager 102 receives cable and port identification
data from the USB sensor bar 106 via the USB connection
for processing. Based on the identification data received
from USB sensor bar 106, device manager 102 generates
and stores network documentation information including,
for example, records of network connections and statuses.
Device manager 102 can also present network status infor-
mation to a user via a graphical user interface; e.g., by
sending network status data to a client device via network
112 (e.g., an Ethernet network or the Internet). Exemplary
client devices can include, but are not limited to, devices
running a Web application 114, a Simple Network Manage-
ment Protocol (SNMP) application 120, or a WSD applica-
tion 122.

In general, device manager 102 serves as a liaison
between USB sensor bar 106 and end user applications (e.g.,
applications 114, 120, and/or 122), Data Center Infrastruc-
ture Management (DCIM) software packages, or mobile
devices. In some embodiments, device manager 102 can
comprise USB ports for interfacing with the network device
side (either directly or via USB hub 104), and a TCP/IP
network interface for exchanging data with the end user side
(e.g., via network 112), where the TCP/IP network interface
can be interfaced, for example, via a web browser. Using a
web browser interface, a user can configure and manage the
device manager 102, obtain current or historical views of the
network architecture and/or connected devices, view topol-
ogy configuration information, or generate network status
reports. Although some examples described herein assume a

20

40

45

50

6

TCP/IP protocol for interfacing with end user devices, some
embodiments of device manager 102 can support other
protocols for interfacing with the end user side without
departing from the scope of this disclosure.

In some configurations, monitoring system 100 can also
include a database 110 for storage of current and/or histori-
cal network status information. Database 110 can be an
integrated component of device manager 102, or can com-
prise a separate storage device communicatively connected
to device manager 102 (as depicted in the example system
of FIG. 1).

USB sensor bar 106 and device manager 102 are now
described in more detail with reference to FIGS. 2-6. FIG.
2 illustrates a number of functional components of USB
sensor bar 106 according to one or more embodiments. It
should be noted that different versions of USB sensor bar
106 can be provided that are compatible with respective
different types of patch cables, including but not limited to
copper cables (e.g. CAT-6 cables having registered jack
connectors) or fiber patch cables. These different versions
can vary according to the type and design of sensor used to
read the cable identification data, the location of the sensors,
relative to the port, the design and locations of the patch
panel ports, and other such design factors. In general, the
high-level components illustrated in FIG. 2 are not depen-
dent upon the type of patch cable (e.g., copper or fiber) with
which the USB sensor bar is designed for use.

USB sensor bar 106 is configured to read data from
memory chips attached to cable plugs inserted into ports
214. In the illustrated example, the memory chips comprise
1-wire memory chips 212. Each 1-wire memory chip 212
contains identification data uniquely associated with the
respective cables plugged into the ports 214. When a cable
(e.g., a copper or fiber cable) fitted with a 1-wire memory
chip is plugged into a port 214, sensor bar 106 reads the
identification data from the chip. The data read can be
transacted by an on-board controller 204 in response to
detection of a new plug being inserted into a port. Controller
204 can transact the data read operation via an inter-
integrated circuit (12C) bus 206 to an I12C to 1-wire converter
208.

In some embodiments, 12C to 1-wire converter 208 can
comprise a 1-wire to 12C multiplexor capable of reading
identification data from multiple 1-wire memory chips 212
and placing the data on the 12C bus 206. An exemplary
8-channel multiplexer 300 capable of performing conver-
sion between 12C and 1-wire protocol is illustrated in FIG.
3. Multiplexer 300 can allow reader firmware loaded on
USB sensor bar 106 to associate a particular 1-wire memory
chip with a given port. Multiplexer 300 can also provide
fault isolation between individual ports 214 (corresponding
to channels 100-I07 in FIG. 3), mitigating the possibility
that a short on a single port will render all other ports on the
sensor bar inoperable.

Returning now to FIG. 2, controller 204 can store data
read from the 1-wire memory chips 212 in a port map array,
buffer the data, and subsequently send the data to device
manager 102 via USB bus 216 when requested by the device
manager. The port map array can document each detected
cable identifier together with the sensor bar port number
from which the identifier was read. To facilitate delivery of
the port map array data to the device manager, USB sensor
bar 106 can include a USB to Serial bridge 202 that passes
data between the USB bus 216 and controller 204. In this
way, USB sensor bar 106 can provide device manager 102
with data required to build a database of sensor bars and
port-to-port patch cable connections. USB Sensor bar 106



US 9,454,501 B2

7

can also receive control and request messages from device
manager 102 via USB bus 216 (e.g., control messages to set
an LED panel indicator, request messages to send the port
map array, etc.).

In the example illustrated in FIG. 2, the link between
controller 204 and USB to Serial bridge 202 is depicted as
a serial connection (e.g., serial with system management
bus). For such systems, controller 204 can convert the
buffered data from 12C protocol to serial protocol and send
the converted data to the USB to Serial bridge 202 for
delivery to the device manager. However, any suitable
format may be used for the link between controller 204 and
bridge 202, including but not limited to another 12C link.

One or more embodiments of USB sensor bar 106 can
also include an 12C LED driver 210 configured to control
one or more LED panel indicators on the front of USB
sensor bar 106. For example, each port 214 of USB sensor
bar 106 may have an associated LED indicator that illumi-
nates when a plug is inserted into the port’s jack, and blinks
to indicate data activity. LED indicators may also be color-
coded to indicate a communication and/or integrity status for
each port.

Operation of the various sensor bar components illus-
trated in FIG. 2 may be controlled by sensor bar firmware
that executes on controller 204. For example, in one or more
embodiments, the sensor bar firmware may continually
monitor the 12C components (e.g., I2C bus 206 and 12C to
1-wire converter 208) for changes to the patch panel con-
nectivity (e.g., a new plug being inserted into a port or an
existing plug being removed from a port). In response to
detection of such a change, controller 204 can send a
message via the USB bus 216 to device manager 102. This
configuration can mitigate the need for the device manager
to ping the USB sensor bar 106 periodically for port con-
nectivity updates. Instead, USB sensor bar 106 sends noti-
fications to the device manager only in response to a port
array change detected by the USB sensor bar 106.

The sensor bar firmware can also consume incoming
command messages received at the USB to Serial bridge
202, and respond by sending appropriate commands to the
12C components or by sending return messages back
through USB to Serial bridge 202, depending on the nature
of the received command.

To facilitate management of multiple USB sensor bars by

8

ments, the identification number can be set using a program-
ming tool that interfaces with the USB to serial bridge 202
via USB bus 216. The identification number or character
string can be saved to non-volatile memory on the USB to
serial bridge 202 and set as the USB device identifier.

Table 1 below lists a number of exemplary device man-
ager commands supported by one or more embodiments of
USB sensor bar 106. It is to be appreciated that the command
set listed in Table 1 is only intended to be exemplary, and

10
any suitable set of sensor bar commands are within the scope
of this disclosure.
TABLE 1
15
Sensor Bar Command Set
Device
Manager
20 Cmd Description Response Notes
1 Set Status No Set each port LED to
LEDs Response off/on or one of two
flash rates
2 Post Tag ID Map of 16-byt Read the RAM storage
25 map to USB Tag IDs of each port for Tag
Tx buffer ID and post the array
3 Post Sensor Version Number  Write Sensor Bar
bar firmware firmware version
version to information to Tx
30 USB Tx buffer buffer
4 Set Tag IDs Map of 16-byte ~ Writes Tag IDs to
Tag IDs 1-wire RAM, post all
Tag IDs to Tx buffer
5 Post Status Map of Status Writes LED status
35 LED map to LED settings map to Tx buffer
USB Tx
Buffer
6 Post 1-Wire Map of 1-wire Read the non-volatile
Serial Number UID serial serial number from
40 map to Tx numbers port 1-wire chips and
buffer post to Tx buffer

The following are exemplary byte streams for the com-
mands listed in Table 1.

the device manager, USB sensor bar 106 can have an 45
associated identification number or character string that can The byte stream for command 1 to Set Status LEDs is as
be read and tracked by the device manager. In some embodi- follows:
Cmd LenL LenH Freq0 PwmO Freql Pwml L1-4 L 21-24
1 Ox0A  0x00 0-255 0-255 0-255 0-255 4 x2bits ... 4x 2 bits

Where:

Cmd: Command Byte = 1
Len L = 10 bytes for payload = 0x0A
Len H = payload is less than 256, therefore = 0

Freq0 = Blink Frequency Prescaler 0
Pwm0 = Blink Pulse Width Modulation 0

Freql = Blink Frequency Prescaler 1
Pmw1—Blink Pulse Width Modulation 1

L 1-4 = LED display states for LEDs 1 to 4
L 5-8 = LED display states for LEDs 5 to 8
L 9-12 = LED display states for LEDs 9 to 12

L 13-16 = LED display states for LEDs 13 to 16
L 17-20 = LED display states for LEDs 17 to 20
L 21-24 = LED display states for LEDs 21 to 24



US 9,454,501 B2

9

The byte stream for command 2 for posting the 1-Wire tag

10

IDs to the device manager is as follows: Cmd Len L Len H FW Version
3 0x08 0x00 8 Bytes
Cmd Len L Len H 5 Where:
Cmd: Command Byte = 3
2 0x00 0x00 Len L = payload byte count low = 8
Len H = payload is less than 256, therefore = 0
Where: FW Version = Firmware version = 4 16-bit integers. The four integers are major version,
minor version, day count (e.g., days since Jan. 1, 2013), build on day count
Cmd: Command Byte = 2
Len L = 0 bytes for payload = 0 10
Len H = pagload is loss than 256, therefore = 0 The byte stream for command 4 to set the tag ID of the
1-wire chips is as follows:
The reply message to command 2 is the same as the
command, with the payload appended:
15 Cmd Len L Len H Tagld[0-15] Port Port
4 0x11 0x00 16 Bytes 0-23 0-23
Cmd LenL LenH  PI[0-15] P24[0-15] FW Ver
Where:
2 0x88 0x01 16 Bytes 16 Bytes 8 Bytes Cmd: Command Byte = 4
Len L = 17 bytes for writing to one port, 16 bytes for Tag ID + 1 byte for port index
Where: 20 LenH= payload is less than 256, therefore = 0
Cmd: Command Byte = 2 TagID = 16 byte Tag ID to write to the 1-wire RAM
Len L = payload byte count low = 136 = 0x88 Port = The port index of a port to write to the 1-wire RAM
Len H = payload byte count high total payload count is 392 high byte is 1
P1-P24 = Port TagID. 16 bytes x number of ports on sensor bar In this example, USB Sensor Bar responds to command 4
FW Ver = Firmware version =4 16-bit integers. The four integers are major version, minor . . ..
version, day count (e.g., days since Jan. 1, 2013), build count on day count. 25 from the device manager with a response similar to the reply
. message for command 2 described above.
The byte stream for command 3 for posting the firmware g
. . . The byte stream for command 5 to post the LED states
version to the device manager is as follows: ) )
back to the device manager is as follows:
30
Cmd Len L Len H
Cmd Len L Len H
5 0x00 0x00
3 0x00 0x00
Where:
\CVth.e:C 4B 3 33 Cmd: Command Byte = 5
Lm L ogm;jan & yte =1 q=0 Len L = 0 bytes for payload = 0
en L = 0 bytes .or payload = Len H = payload is less than 256, therefore = 0
Len H = payload is less than 256, therefore = 0
The reply message to command 3 is the same as the The reply message to command 5 is the same as the
command, with the payload appended: command, with the payload appended:
Cmd LenL LenH Freq0 PwmO Freql Pwml L1-4 L 21-24
5 0x0A 0x00  0-255 0-255 0-255 0-255 4 x 2 bits 4 x 2 bits
Where:

Cmd: Command Byte = 5

Len L = 10 bytes for payload = 0x0A

Len H = payload is less than 256, therefore = 0

Freq0 = Blink Frequency Prescaler 0

Pwm0 = Blink Pulse Width Modulation 0

Freql = Blink Frequency Prescaler 1

Pmw1—Blink Pulse Width Modulation 1

L 1-4 = LED display states for LEDs 1 to 4

L 5-8 = LED display states for LEDs 5 to 8

L 9-12 = LED display states for LEDs 9 to 12

L 13-16 = LED display states for LEDs 13 to 16

L 17-20 = LED display states for LEDs 17 to 20

L 21-24 = LED display states for LEDs 21 to 24



US 9,454,501 B2

11

Each LED state is defined by two bits as:

00: LED off

01: LED on solid

10: LED blinks at rate defined by Freq0 and Pwm0

11: LED blinks at rate defined by Freql and Pwm1

The byte stream for command 6 to for posting the 1-Wire
serial numbers to the device manager is as follows:

Cmd Len L Len H

6 0x00 0x00

Where:

Cmd: Command Byte = 6

Len L = 0 bytes for payload = 0

Len H = payload is less than 256, therefore = 0

The reply message to command 6 is the same as the
command, with the payload appended:

Cmd  LenL Len H P1[0-15] P24[0-15]

6 0xCO 0x00 8 Bytes 8 Bytes

Where:

Cmd: Command Byte = 6

Len L = payload byte count low = 192 - 0xC0O

Len H = payload byte count high = 0

P1-P24 = Port 1-Wire serial number. 8 bytes x number of ports on sensor bar

FIG. 4 is an example methodology that can be carried out
by the USB sensor bar firmware to facilitate reading of
1-wire chip identifiers and processing of device manger
commands. While, for purposes of simplicity of explanation,
the methodologies shown herein are shown and described as
a series of acts, it is to be understood and appreciated that the
subject innovation is not limited by the order of acts, as some
acts may, in accordance therewith, occur in a different order
and/or concurrently with other acts from that shown and
described herein. For example, those skilled in the art will
understand and appreciate that a methodology could alter-
natively be represented as a series of interrelated states or
events, such as in a state diagram. Moreover, not all illus-
trated acts may be required to implement a methodology in
accordance with the innovation. Furthermore, interaction
diagram(s) may represent methodologies, or methods, in
accordance with the subject disclosure when disparate enti-
ties enact disparate portions of the methodologies. Further
yet, two or more of the disclosed example methods can be
implemented in combination with each other, to accomplish
one or more features or advantages described herein.

Initially, at 402, the USB sensor bar is initialized and
initial 1-wire chip serial numbers are read for any cables
and/or plugs that are inserted into ports of the USB sensor
bar. After this initial read operation, port array data contain-
ing the detected serial numbers of the respective 1-wire
chips and the location of each serial number on the patch
panel (e.g., the port number into which the 1-wire chip is
inserted) is stored as a 1-wire port configuration at step 406.

After the initialization of step 402, the subsequent steps
are performed during normal operation of the USB sensor
bar. At 404, the 1-wire chip serial numbers are read. At 408,
a determination is made regarding whether any port changes
have been made since the previous reading of the 1-wire
chip serial numbers. This determination can be made, for
example, by comparing the port configuration read at step
404 with the port array stored at step 406. A port change can
comprise insertion of a new cable plug into a port of the
patch panel (and corresponding insertion of a 1-wire chip

10

15

20

25

30

40

45

12

into a port of the USB sensor bar), removal of a cable plug
from a port, or relocation of a cable plug to a new port.

If it is determined at 408 that a port change has been made
based on the read operation of step 404, the port configu-
ration is updated at step 410 and the new port array is stored
at 406 as the new 1-wire port configuration. The method-
ology then proceeds to step 416, where a “post configura-
tion” flag is set in order to indicate that the port configuration
has been changed in the present cycle. Additionally, 12C
LED commands are sent at step 420 to update any necessary
LEDs on the USB sensor bar to reflect the new port
configuration (e.g., turning on an LED associated with a port
into which a new cable plug has been inserted, turning off an
LED associated with a port from which a cable plug has
been removed, etc.). The methodology then moves to step
422, where it is determined whether the “post configuration”
flag has been set. The “post configuration” flag informs the
controller 204 that the port configuration has been updated,
and that the new configuration must therefore be sent to the
device manager. Accordingly, since the “post configuration”
flag had been set at step 416 in this instance (“Yes” at step
422), the port configuration is sent out the USB port at step
424, and the methodology returns to step 404 to perform the
next read of the 1-wire chip serial numbers.

If no port changes were detected at step 408, the meth-
odology moves to step 412, where a determination is made
regarding whether an incoming command has been received
from the device manager. If an incoming command has been
received at step 412, a determination is made at step 414 as
to whether the incoming command is a “Get 1-wire 1D”
command or a “Set 1-wire ID” command. The “Get 1-wire
ID” command can comprise a request from the device
manager to retrieve one or more 1-wire IDs stored in the port
configuration, while the “Set 1-wire ID” command can be an
instruction from the device manager to set a new identifier
for one or more 1-wire chips. If a Get or Set command has
been received, the methodology moves to step 416, where
the “post configuration” flag is set, and steps 420, 422, and
424 are performed as described above in order to send the
port configuration data to the device manager. In the case of
a Get command, the stored port configuration is sent in its
current form. In the case of a Set command, any necessary
1-wire chip identifiers are set in accordance with the
received Set command prior to sending the port configura-
tion to the device manager.

Returning to step 414, if it is determined that the incoming
command is not a “Get 1-wire ID” or a “Set 1-wire ID”
command, the methodology proceeds to step 418, where a
determination is made regarding whether the incoming
command is an LED setting type command. This can
comprise a command from the device manager to turn on or
off an LED indicator on the USB sensor bar, or to change a
color or blink rate of an LED indicator. If the command is
an LED setting type command, the methodology moves to
step 420, where the appropriate 12C LED commands are sent
in order to carry out the requested LED setting. The meth-
odology then proceeds to step 422, where it is determined
that the “post configuration” flag has not been set (since the
LED setting type command does not require a port configu-
ration change). Accordingly, the methodology returns to step
404 without sending the port configuration to the device
manager.

FIG. 5 illustrates a number of general functional compo-
nents of device manager 102 according to one or more
embodiments. The combination of functional components
depicted in FIG. 5 is not intended to be exhaustive, and some



US 9,454,501 B2

13

embodiments of device manager 102 may omit one or more
components depicted in FIG. 5 without deviating from the
scope of this disclosure.

Device manager 102 can include a USB host controller
502 that serves as an interface between USB devices on USB
bus 520 (e.g., USB sensor bar 106) and the device manager’s
software. USB host controller 502 can comprise the hard-
ware and/or software that supports USB communication at
the device manager’s USB port. Device manager 102 can
also include a manufacturer’s dynamic-link library (DLL)
504, which supports the device manager’s operating system
and associated programs.

Network stack 522 comprises the supporting framework
(e.g., protocol stacks) for communication with a network
over the device manager’s network port. In one or more
embodiments, network stack 522 can support TCP/IP pro-
tocol; however, other protocols are also within the scope of
one or more embodiments of this disclosure.

In conjunction with network stack 522, one or more of a
web application component 514, a SNMP component 516,
or a WSD component 518 can support communication with
various types of client applications (a web application, an
SNMP client application 120, or a WSD client application,
respectively). Device manager 102 can leverage these com-
ponents to provide network status information to client
devices and applications using the respective application
protocols. For example, device manager 102 can generate a
graphical user interface that conveys status information for
the respective ports of a USB sensor bar connected to USB
bus 520, and deliver the interface to a client device via the
network port using web application component 514.

Device manager 102 also comprises a number of compo-
nents for managing the USB sensor bar and other compo-
nents on USB bus 520, as well as processing data received
from those USB devices. Sensor bar component 506 man-
ages data exchanges between device manager 102 and USB
sensor bar 106. This can include, for example, sending
requests for port status data, sending sensor bar configura-
tion data (e.g., instructions for setting a name for the USB
sensor bar or individual ports thereof), or sending LED
setting type instructions to the USB sensor bar. In addition,
sensor bar component 506 can manage receipt of solicited
and unsolicited data from the USB sensor bar.

Monitored PDU component 508 manages similar data
interactions between the device manager 102 and a moni-
tored power distribution unit that may also reside on the
USB bus 520. Monitored PDUs will be discussed in more
detail infra.

Device manager 102 also runs a suite of device manager
functions 510. These can include such operations as pro-
cessing of network status data received from one or more
USB sensor bars, data collection and storage, generation of
notifications or alarms in response to detection of a defined
network event, and other functions to be described in more
detail below.

In one or more embodiments, device manager 102 can
comprise a hardware device preconfigured with some or all
of the functional components illustrated in FIG. 5. Alterna-
tively, the functions illustrated in FIG. 5 can be provided as
software that can be installed on a standard computing
device (e.g., a server or other computer) so that the com-
puting device can serve as a device manager for one or more
USB sensor bars.

FIG. 6 depicts a number of system components compris-
ing device manager 102 according to one or more embodi-
ments. One or more of the system components illustrated in
FIG. 6 can collectively comprise a software suite (e.g., the

10

15

20

25

30

35

40

45

50

55

60

65

14

suite of functions represented by device manager functions
510 of FIG. 5) that can be installed and executed on device
manager 102 to facilitate tracking and monitoring of USB
sensor bars and network branches connected thereto.

Device manager 102 includes at least one network inter-
face card (NIC) 602 comprising a network port (e.g., an
Ethernet port). NIC 602 allows device manager 102 to be
placed on a network (e.g., network 112) to facilitate com-
munication with client applications (e.g., an end user web
browser 622) or with other device managers. The NIC 602
serves as a physical interface between the device manager
and an end user over a network (e.g., via TCP/IP). The NIC
602 can be configured by the end user using a Dynamic Host
Configuration Protocol (DHCP) server or by using a web
application that interfaces with the NIC 602 and allows
necessary device settings on the device manager 102 to be
set by a user.

Device manager 102 also comprises at least one USB port
604 for communication with one or more USB devices. USB
port 604 can interface with one or more USB sensor bars,
either directly or via a USB hub (e.g., USB hub 104 of FIG.
1). USB port 604 may also communicate with a monitored
power distribution unit (PDU) if such a device is present on
the USB bus. Device manager 102 can discover and con-
figure USB devices using standard USB enumeration.

Operating system 616 can comprise any suitable operat-
ing system configured with components necessary for moni-
toring and management of USB sensor bars by device
manager 102.

Web server 608 can be used by device manager 102 to
serve web pages to client devices (e.g., end user web
browser 622) via NIC 602. Such web pages can include, for
example, graphical displays that render network status infor-
mation based on data received from the USB sensor bars,
configuration pages through which a user can enter configu-
ration settings for device manager 102 or for a USB sensor
bar attached thereto, or other such interface displays.

Database 610 can be used by device manager 102 to store
current and historical network status and configuration data
received from the USB sensor bar. The data maintained in
database 610 can be used to populate web-based user
interfaces (such as those served by web server 608), perform
comparisons between a current network configuration
reported by the USB sensor bar and a previous network
configuration stored in database 610, generate reports that
map a current or previous network infrastructure, or other
such functions. In some embodiments, database 610 may
also store alarm and/or notification rules that define network
events that will trigger delivery of a remote alarm or
notification to a client device. For example, a notification
rule may define that a notification should be delivered to one
or more specified client devices in response to a determi-
nation that a patch cable plugged into a specified port of a
specified USB sensor bar is removed. Accordingly, when
device manager 102 receives port confirmation data indi-
cating that the specified port of the specified USB sensor bar
no longer has an associated 1-wire chip identifier (that is, the
plug containing the 1-wire chip has been removed), the
device manager 102 will refer to the notification rule,
determine that this condition matches the defined notifica-
tion event, and send a notification to the specified client
devices via NIC 602. Device manager 102 may also log
general system events to database 610. In an exemplary
embodiment, database 610 can comprise a structured query
language (SQL) database (e.g., SQL Server Express with
Reporting Services).



US 9,454,501 B2

15

Web application 612 can comprise a developed set of web
pages and processes for configuration of the device manag-
er’s hardware, configuration and control of USB devices
connected to the device manager (e.g., USB sensor bar 106,
a monitored PDU, etc.), system change planning and con-
trol, event logging, and system reporting. Web application
612 can serve as an external facing graphical user interface
for device manager 102. In one or more embodiments, web
application 612 can run on an Internet Information Services
(IIS) web server on device manager 102. In some embodi-
ments, Web application 612 can use hyptertext markup
language (HTML), Active Server Page (ASPX), and/or
Javascript scripting. Web page content and actions associ-
ated with web application 612 can use both the database 610
and the web services operations to provide content and
perform configuration changes.

Web services on devices (WSD) agent 618, which can
adhere to the web services on devices standards, can provide
for device manager hardware discovery on the end user’s
network. WSD agent 618 can also provide a web service
interface for configuration and control of the device man-
ager, and a web service interface into the USB devices (e.g.,
USB sensor bar 106, a monitored PDU, etc.) connected to
the device manager. WSD agent 618 can also provide a web
service eventing interface for device manager 102 or other
external applications, such as a mobile device application or
other device managers on distant subnets. Device manager
102 can use WSD agent 618 to discover other device
managers on local and remote subnets, thereby allowing a
user to see all connected devices through a web application
interface associated with any one of the device managers.
FIG. 7 is an exemplary, non-limiting UML depiction of the
WSD agent 618. The WSD binary can be a WSD device for
WSD discovery, and can host the DeviceManager service for
device manager level operations.

In one or more embodiments, device manager 102 can
also implement a SNMP agent 614, which can adhere to
SNMP protocol and provides for device manager hardware
discovery on the end user’s network. SNMP agent 614 also
provides an SNMP interface for configuration of the device
manager 102, as well as an SNMP interface for devices
connected to the device manager 102. SNMP agent 614 can
also provide management information base (MIB) data for
MIB browsers and legacy systems for viewing of USB
devices and their configuration.

Referring back to FIG. 6, device collection manager 620
can provide a generic interface between USB devices con-
nected to device manager (e.g., USB sensor bars, monitored
USB PDUs, etc.) and the web services interface that the web
application 612 and WSD agent 618 consume. Device
collection manager 620 can manage data from devices (e.g.,
USB sensor bars, monitored PDUs, etc.) that are connected
to device manager 102 over the USB bus. Device collection
manager 620 populates the device manager’s database 610
and provides an interface between web services and SNMP
components to access the data. Device collection manager
620 can pass the data upstream to the web application,
SNMP agent, or external devices. In some embodiments,
device collection manager 620 can implement an abstract
factory design pattern to provide a “plug-in” approach to
managing multiple device types, and can collect down-
stream device data from attached devices and from other
device managers. FIG. 8 is an exemplary, non-limiting UML
depiction of the device collection manager abstract factory.
In this example, the DeviceConnectionManager class 802 is
an Abstract Factory that builds a list of all the currently
connected devices. Each object in the collection implements

5

10

20

25

30

35

40

45

50

55

60

65

16

the interface lidmDevice. The lidmDeviceManager interface
804 is implemented by device type managers to build device
managers of their respective device types. The Device
Manager collection is dynamically filled by loading all
manager DLLs in a device factory folder. Each device
manager implements an interface of the type of device
manager it is producing (e.g., a Patch Panel device manager
806 or a PDU device manager 808). The device manager
collection is populated by dynamically loading all device
type manager DLLs in a device folder.

FIG. 9 is a flow diagram illustrating an exemplary flow of
data through the various system components of device
manager 102 according to one or more embodiments. At
startup, device collection manager 620 loads the locally
configured device managers. Each device manager is con-
tinually monitoring its connected devices for status and
makes the data available to the device collection manager
core. In addition to the local device managers, device
collection manager 620 monitors other device managers
through the WSD interface to collect the device information
for all devices locally connected to their respective device
managers, thus allowing any device manager to provide
device data for all devices in a system.

The WSD agent 618 and SNMP agent 614 are connected
persistently to the device collection manager 620 in order to
respond to any received request, and/or to send events.
Requests for device status for any customer facing interface,
such as web application 612 or DCIM software, can be made
through the WSD or SNMP interface.

FIGS. 10-12 illustrate a number of exemplary system
configurations for the device manager and USB sensor bars
according to one or more embodiments. FIG. 10 illustrates
a configuration wherein a number of USB sensor bars 1004
are directly connected to USB ports 1002 of device manager
102 using USB cables 1006. This configuration allows
device manager 102 to interface with a number of USB
sensor bars 1004 equal to a number of USB ports 1002
available on device manager 102.

FIG. 11 illustrates a configuration that utilizes USB hubs
104 to increase the number of USB sensor bars 1004 that can
be connected to device manager 102. In this example,
upstream ports of each USB hub 104 are connected directly
to one of the device manager’s USB ports 1002. Down-
stream ports of each USB hub are respectively connected to
one of the USB sensor bars 1004. Assuming N available
USB ports on device manager 102 and M available ports on
each USB hub 104, this configuration can support a number
of USB sensor bars 1004 equal to (NxM).

FIG. 12 illustrates a configuration that further increases
the number of USB sensor bars 1004 that can be connected
to device manager 102. Similar to the configuration depicted
in FIG. 10, upstream ports of each USB hub 104 are
connected directly to one of the device manager’s USB ports
1002. In addition, one upstream port of each USB hub 104
is connected to the downstream port of another USB hub
1102, leaving the remaining upstream ports available to
interface with a USB sensor bar 106 (not shown). This
configuration can support a number of USB sensor bars
1004 equal to (Nx(2M-1)).

In addition to USB sensor bar 106, some embodiments of
device manager 102 may also support monitoring of a USB
power distribution unit (PDU). FIG. 13 illustrates an exem-
plary system that includes a monitored PDU 1302. Similar
to USB sensor bar 106, monitored PDU 1302 can interface
with device manager 102 over a direct USB connection, or
via a USB hub 104. Monitored PDU 1302 can distribute
power to one or more USB devices on the USB network



US 9,454,501 B2

17

(e.g., USB sensor bars or other devices). Additionally,
monitored PDU 1302 can provide statistical data to device
manager 102 over the USB bus. Data provided by monitored
PDU 1302 can include, for example, measured load, mea-
sured humidity, measured temperature, internal power sup-
ply faults, or other statistics.

FIG. 14 illustrates a number of functional components of
an example monitored PDU 1302. Similar to USB sensor bar
106, monitored PDU 1302 can comprise a controller 1406
that facilitates reading data for delivery to the device man-
ager. However, rather than reading cable identification data
from a 1-wire chip, controller 1406 reads data generated by
internal components of the monitored PDU 1302. Such
components can include, for example, one or more of a
power measurement engine 1408 that measures power sta-
tistics for the PDU (e.g., a current load on the PDU’s power
supply, an amount of available power, a current draw, etc.),
an 12C LED driver 1410 that controls on/off and blinking
states for the LEDs associated with the PDU, and one or
more [2C temperature or humidity sensors 1412. Controller
1406 can read data from these or other components on 12C
bus 1402.

Controller 1406 can buffer data read from components
1408, 1410, and/or 1412 and send the data to the device
manager over the USB bus via USB to Serial bridge 1404.
In the example illustrated in FIG. 14, the link between
controller 1406 and USB to Serial bridge 1404 is depicted as
a serial connection (e.g., serial with system management
bus). For such systems, controller 1406 can convert the
buffered data from 12C protocol to serial protocol and send
the converted data to the USB to Serial bridge 1404 for
delivery to the device manager. However, any suitable
protocol may be used for the link between controller 1406
and bridge 1404, including but not limited to a serial bus or
12C.

Monitored PDU 1302 may also receive control and
request messages from the device manager via the USB bus,
including but not limited to control messages to 12C LED
driver 1410 for setting a state and/or blink rate of an LED,
requests for data collected by power measurement engine
1408 or temperature and humidity sensors 1412, etc.

Operation of the various PDU components illustrated in
FIG. 14 may be controlled by firmware that executes on
controller 1406. For example, in one or more embodiments,
the firmware may continually monitor the 12C components
(e.g., power measurement engine 1408, 12C LED driver
1410, and/or temperature and humidity sensors 1412) for
events that merit notification Such events can include, for
example, e.g., an overheat condition detected by a tempera-
ture sensor, a low power condition, a high humidity condi-
tion, etc. In response to detection of such an event, controller
1406 can send a message via the USB interface to the device
manager. This configuration can mitigate the need for the
device manager to ping the monitored PDU 1302 periodi-
cally for port connectivity updates. Instead, monitored PDU
only sends notifications to the device manager in response to
alarm or notification conditions detected at the PDU.

To facilitate management of multiple monitored PDUs by
the device manager, monitored PDU 1302 can have an
associated identification number or character string that can
be read and tracked by the device manager. In some embodi-
ments, the identification number can be set using a program-
ming tool that interfaces with the USB to Serial bridge 1404
via the PDU’s USB interface. The identification number or
character string can be saved to non-volatile memory on the
USB to serial bridge 1404 and set as the PDU identifier.

15

20

30

40

45

18

Embodiments of the USB sensor bar described herein can
be provided as an integrated component of a patch panel;
e.g., pre-installed behind a front face of the patch panel’s
housing such that the 1-wire memory chip ports are located
above or below their corresponding patch cable ports. In this
manner, a 1-wire memory chip fitted on a patch cable plug
will be inserted into the data read port of the USB sensor bar
when the cable plug is inserted into the patch panel port. In
other embodiments, the USB sensor bar can be provided as
a retrofittable component that can be overlaid on the front
face of a standard patch panel, thereby converting the
unmonitored patch panel to an intelligent panel that supports
port sensing in conjunction with a device manager, as
described above. FIGS. 15 and 16 illustrate an example
retrofittable USB sensor bar overlay 1500. While the
example illustrated in FIGS. 15 and 16 depict a USB sensor
bar overlay for a copper patch panel (e.g., panels designed
to receive registered jack connectors), versions of the ret-
rofittable overlay that are compatible with fiber enclosures
are also within the scope of one or more embodiments of this
disclosure.

Retrofittable USB sensor bar overlay 1500 can comprise
an overlay panel 1508 designed to mount to the front of a
patch panel 1504. USB sensor bar circuitry 1506 can be
mounted to the back of overlay panel 1508, and can com-
prise the sensing technology and other USB sensor bar
components necessary for reading 1-wire memory chip data
from 1-wire ports 1512, which are located on the front of
overlay panel 1508. For example, USB sensor bar circuitry
1506 can comprise one or more of 12C to 1-wire converter
208, 12C LED driver 210, 12C bus 206, controller 204, and
USB to Serial Bridge 202 (see FIG. 2). USB sensor bar
circuitry 1506 can also include a USB cable 1510 attached
to the USB to Serial Bridge 202. USB cable 1510 can be
plugged into the USB port of a device manager (e.g., device
manager 102 of FIG. 1) or a USB hub connected to the
device manager (e.g., USB hub 104 of FIG. 1).

When overlay panel 1508 is mounted to patch panel 1504,
windows 1514 in the overlay panel 1508 allow patch cable
plugs to pass through for insertion into patch panel ports
1502. If the plugs have been fitted with a 1-wire memory
chip for plug identification, the 1-wire memory chips will be
inserted into 1-wire ports 1512 on the front of overlay panel
1508. Sensing technology on the USB sensor bar circuitry
1506 can then read the identification data on the respective
1-wire chips via the 1-wire ports 1512. FIG. 16 depicts the
retrofittable USB sensor bar overlay mounted to the front of
patch panel 1504, thereby outfitting patch panel 1504 for
intelligent monitoring by a device manager as described
above.

FIGS. 17 and 18 illustrate two example retrofittable USB
sensor bars that are compatible with copper patch panels and
fiber enclosures, respectively. FIG. 17 illustrates an example
retrofittable USB sensor bar 1700 for a copper patch panel,
comprising an overlay panel 1702 having a row of patch
panel port windows 1706. Each of the port windows 1706
has an associated 1-wire chip port 1704 for reading a 1-wire
memory chip mounted to a plug of a copper cable (e.g.,
CAT-6 patch cables with registered jack connectors). Ret-
rofittable USB sensor bar 1700 can be mounted to the front
of patch panel using mounting holes 1708. In one or more
embodiments, windows 1706 and their corresponding
1-wire chip ports 1704 will have a fixed spacing, corre-
sponding to a standard patch panel port spacing. In some
alternative embodiments, overlay panel 1702 may be
designed to allow each window and its respective 1-wire
chip port to slide horizontally within the overlay frame,



US 9,454,501 B2

19

providing flexible compatibility with patch panels having
non-standard port spacing. In such embodiments, sensing
electronics associated with each movable port can be
installed on respective daughter boards attached to the ports.
The daughter boards can be connected to a main mother-
board containing the controller and USB to Serial Bridge.
This configuration can allow flexible re-positioning of indi-
vidual windows on the frame.

FIG. 18 illustrates an example retrofittable USB sensor
bar 1800 for a fiber enclosure. Similarly to the copper patch
panel overlay depicted in FIG. 17, retrofittable USB sensor
bar 1800 comprises an overlay panel 1802 having windows
1804 that fit over fiber optic cable ports of a fiber enclosure,
and 1-wire memory chip ports 1806 configured to receive
1-wire memory chips mounted to the jacks of the respective
fiber optic cables. Mounting holes 1808 are used to affix
retrofittable USB sensor bar 1800 to the front face of the
fiber enclosure.

The retrofittable USB sensor bars described herein can be
used to upgrade standard (non-intelligent) copper panels and
fiber enclosures to intelligent panels/enclosures by addition
of the above-described overlay panels, which include the
necessary sensing electronics controllers, and USB ports.
For rack-mounted panels, the upgrade can be accomplished
without removing the panel from the rack or cabinet. More-
over, the upgrade can utilize the existing copper or fiber
cabling on the back side of the panel/enclosure with minimal
or no changes. On the front side, patch cables can be
retrofitted with 1-wire chip holders in order to convert the
standard patch cables into intelligent patch cables compat-
ible with the upgraded intelligent patch panel. Example
1-wire chip holders will be described in more detail below.

Although the retrofittable USB sensor bars described
above include 1-wire memory chip ports for reading the
cable identification data, some versions of the retrofittable
USB sensor bars can support other types of identification
sensing. For example, some versions of the USB sensor bar
may include RFID tag readers, rather than 1-wire chip ports,
associated with each cable port, thus supporting intelligent
patch cables that are fitted with RFID tags rather than 1-wire
memory chips. Similar to the 1-wire chips described above,
each RFID tag can be written with cable identification data
that uniquely identifies each cable plug, and this identifica-
tion data can be read from the RFID tags by the RFID tag
readers when the cable is inserted into a port fitted with the
USB sensor bus.

Designing the sensor bars (both retrofittable and pre-
integrated) as USB devices offers a number of benefits. For
one, the number of USB sensor bars monitored by a single
device manager is easily scalable (see, e.g., FIGS. 10-12).
Also, USB devices can be auto-detected upon connection to
or disconnection from the USB bus. USB sensor bars also
support plug-and-play capability, since USB devices are
automatically assigned a bus address. Moreover, power to
the sensing electronics of the retrofittable USB sensor bar
can be provided via the USB bus (e.g., by a monitored PDU
plugged into a shared USB hub). Various embodiments of
the USB sensor bars (both pre-integrated and retrofittable)
described above can integrate physical port security (e.g., in
the form of secure registered jack or Lucent connector
products, such as mechanical port lock or plug lock devices)
with electronic port monitoring by virtue of the USB inter-
face to the device manager.

The system described herein also allows multiple device
types to be added to the same USB bus for monitoring and/or
management by the device manager. For example, in addi-
tion to the USB sensor bars and monitored PDUs described

10

15

20

25

30

35

40

45

50

55

60

65

20

above, other USB devices can include standalone power
meters, telemetry devices (e.g., temperature sensors, humid-
ity sensors, airflow meters, air quality measurement devices,
leak detection sensors, smoke detection sensors, etc.), light-
ing controls, or other such devices. These devices may
include USB ports for interfacing with the shared USB bus,
and for exchanging data with the device manager and other
USB devices. In some embodiments, these other USB
device types can include integrated 12C busses, controllers,
and USB to Serial bridges similar to those found in USB
sensor bar 106 and monitored PDU 1302 described above.
Accordingly, corresponding embodiments of device man-
ager 102 can include software components that support data
communication, monitoring, management, and reporting
functions for these other types of USB devices, allowing
many different types of USB devices to be collectively
monitored and managed under a single comprehensive plat-
form.

Also, some embodiments of the USB sensor bar can
support dual validation, such that both intelligent patch
cables fitted with 1-wire chips and non-intelligent patch
cables can be detected. As an example, the USB sensor bar
can detect non-intelligent cables using a mechanical shorting
function associated with each port. This detection function
can work in conjunction with the 1-wire reader functions
described above so that both intelligent and non-intelligent
cables can be detected.

FIGS. 19-24 illustrate a first example 1-wire chip reader
design that can be included in either of the retrofittable or
pre-integrated versions of the USB sensor bar, and a design
for a corresponding 1-wire chip holder for an intelligent
patch cable. This example depicts the 1-wire reader design
in the context of a retrofittable USB sensor bar. However, a
similar design can be used in an intelligent patch panel
having a pre-integrated USB sensor bar for reading identi-
fication data from intelligent patch cables.

FIG. 19 illustrates a portion of a printed circuit board
1902 comprising the USB sensor bar, and a corresponding
portion of an overlay panel 1906 (similar to overlay panel
1508 or 1702). The illustrated portions correspond to a
single 1-wire chip reader associated with a corresponding
cable port. Overlay panel 1906 mounts to the front of a
standard (non-intelligent) patch panel (not shown) such that
window 1908 is positioned over a port of the patch panel.

Two curved contacts 1904 are physically and electrically
connected (e.g., soldered) to printed circuit board 1902 and
wired to corresponding sensing circuitry (e.g., [2C to 1-wire
converter 208, 12C bus 206, controller 204, etc.). The printed
circuit board 1902 with attached contacts 1904 mounts
inside overlay panel 1906 such that the contacts 1904 are
located above window 1908, as shown in FIG. 20. When the
overlay panel 1906 is mounted to the front of a patch panel,
the two contacts 1904 are located above the receptacle in
which the plug is received, such that when the plug is
inserted into the receptacle, two contact pads of the 1-wire
chip affixed to the plug make contact with the two contacts
1904, respectively, so that the identification data can be read
from the 1-wire chips using sensing circuitry on the printed
circuit board.

FIG. 21 illustrates an example design for a retrofittable
1-wire chip holder that is compatible with the 1-wire chip
reading design described above. This design converts a
standard patch cable plug to an intelligent plug capable of
storing identification data readable by the USB sensor bar.
Identification data is stored on a 1-wire chip 2104 having
two electrically conductive contact pads 2102. The 1-wire
chip 2104 is physically mounted to a plug 2110 using the



US 9,454,501 B2

21

1-wire chip holder 2108, which can be attached to the plug
2110. The 1-wire chip holder 2108 comprises a raised
retaining portion 2106 that holds the 1-wire chip 2104 in
place.

FIG. 22 illustrates the assembled 1-wire chip holder
components. As shown, the retaining portion 2106 holds the
1-wire chip 2104 at an angle relative to the upper surface of
the plug, with the outward facing surface of the 1-wire chip
2104 facing generally toward the front of the plug. The
1-wire chip 2104 is oriented in the chip holder 2108 such
that the contact pads 2102 are outward facing, allowing the
contact pads 2102 to electrically connect to the contacts
1904 when the plug is inserted into the receptacle, as
illustrated in FIG. 23.

FIG. 24 is a cross-section view of a patch cable plugged
into a patch panel 2402 fitted with a USB sensor bar overlay
panel 1906. As shown, when the USB sensor bar overlay
panel 1906 with printed circuit board 1902 is mounted to the
front of patch panel 2402, contacts 1904 within 1-wire chip
reading port 2405 are located above the patch panel port
2404. Window 1908 is oriented over the patch panel port
2404 to allow the plug 2110 to pass through for insertion into
port. When the plug is inserted into port 2404, the 1-wire
chip is inserted into 1-wire chip reading port 2405 of the
USB sensor bar overlay panel 1906, and the two contact
pads of the 1-wire chip 2104 make contact with the two
contacts 1904, respectively, so that sensing circuitry on
printed circuit board 1902 can read the identification data
stored on the 1-wire chip 2104.

FIGS. 25-29 illustrate another example 1-wire chip holder
design for an intelligent patch cable, and a corresponding
1-wire chip reader design that can be included in either of
the retrofittable or pre-integrated versions of the USB sensor
bar. As will be demonstrated below, this design can ensure
that a consistent, robust connection force is applied between
the sensor contacts and the contact pads of the 1-wire chip
even if the cable is flexed near the mated contact junction.

FIG. 25a is an exploded view of an assembly for attaching
a l-wire memory chip 2504 to a registered jack (RJ)
connector 2506 of a copper patch cable. The 1-wire chip
holder 2508 is configured to slip onto the front of RJ
connector 2506 to render the connector compatible with the
intelligent monitoring system described herein. In contrast
to 1-wire chip holder 2108, which comprised an angled
retaining portion 2106 for holding the 1-wire chip at an
angle relative to the top surface of the holder, 1-wire chip
holder 2508 comprises an elevated retaining portion 2502
for holding 1-wire memory chip 2504 substantially parallel
with the top surface of 1-wire chip holder 2108. Note that the
contact pads of 1-wire memory chip 2504 comprise a longer
pad 2510qa and a shorter pad 25105, wherein the edges of the
two contact pads facing toward the rear of 1-wire chip holder
2508 are flush, and the edges of the contact pads facing the
toward the front of 1-wire chip holder 2508 are staggered. In
the present example, the longer pad 2510qa is the ground
lead, while the shorter pad 251056 is the signal lead.

FIG. 25b illustrates the assembled components for this
1-wire chip holding design. In this assembly, 1-wire memory
chip 2504 is oriented in the retaining portion 2502 such that
the staggered edges of contact pads 2510a and 25105 are
facing forward (toward the front of 1-wire chip holder
2508). This arrangement ensures that the longer pad 2510qa
(the 1-wire chip ground lead) makes contact with its corre-
sponding data reading sensor contact before the shorter pad,
allowing any static electricity that may have accumulated in
the chip to be discharged before the signal lead makes
contact with the sensors (e.g., in a scenario in which static

10

15

20

25

30

35

40

45

50

55

60

65

22

from the user’s body has transferred to 1-wire memory chip
2504). While this arrangement can protect 1-wire memory
chip 2504 from electrical damage, there may be some risk of
inadvertent disconnection between the shorter contact pad
251056 and its corresponding sensor contact in the data
reading port, particularly if the plug has significant freedom
of movement while engaged with the patch panel jack. This
issue can be remedied by rotating the chip inside the
retaining portion 2502 such that the flush edges of contact
pads 2510a and 25106 face forward toward the front of
1-wire chip holder 2508, as illustrated in FIG. 25¢. This
arrangement ensures a reliable connection between contact
pads 2510a and 25105 and their corresponding sensor
contacts in the data reading port, and therefore may be a
preferred arrangement in some applications in which static-
related damage is not a concern.

FIG. 26 illustrates a portion of a printed circuit board
2602 of a USB sensor bar configured to mate with the
assembly depicted in FIG. 25. Printed circuit board 2602
comprises data reading circuitry configured to read cable
identification data from 1-wire memory chip 2504. Printed
circuit board 2602 can be mounted inside an overlay panel
used to convert a standard patch panel to an intelligent patch
panel capable of reading cable identification data and
exchanging information with a device manager over a USB
bus, as described in previous examples. Alternatively,
printed circuit board 2602 can be a native component of an
intelligent patch panel. The illustrated portion corresponds
to a single 1-wire chip reader associated with a correspond-
ing patch panel cable port. Spring contacts 2604 mounted to
printed circuit board 2602 are electrically connected to the
data reading circuitry (not shown) resident on the printed
circuit board 2602. The design of the data reading circuitry
and spring contacts 2604 may depend on whether the 1-wire
chip will be oriented according to the arrangement of FIG.
25b or the arrangement of FIG. 25¢.

FIG. 27 illustrates the 1-wire chip holder design of FIG.
25 interfacing with spring contacts 2604. The upper two
contacts of spring contacts 2604 are designed to make
contact with the contact pads of the 1-wire memory chip
2504 when the patch cable plug (fitted with the 1-wire chip
holder 2508) is inserted into the cable port. The lower two
contacts of spring contacts 2604 are designed to apply a
force on the bottom surface of retaining portion 2502,
creating a clamping force between the upper and lower
contacts that ensures a reliable contact force between the
upper spring contacts and the contact pads of 1-wire
memory chip 2504.

The spring contact design depicted in FIGS. 26 and 27 can
maintain a robust and consistent contact force between the
upper spring contacts and the contact pads of the 1-wire chip
even if the patch cable is flexed near the port. For example,
in some scenarios approximately 100 grams of consistent
force is recommended to maintain a reliable electrical con-
nection between the sensing contacts and the contact pads of
the 1-wire memory chip. The force created by the clamping
action of the upper and lower portions of spring contacts
2604 can ensure that this recommended force is maintained
despite flexing of the cable at or near the mated contact
junction, thereby reducing the risk of poor signal integrity
due to high resistivity that can build up in the contact region
over time.

FIG. 28 depicts a side view of copper cable connector
2506—outfitted with 1-wire chip holder 2508—plugged into
a patch panel port 2802 that has been fitted with a USB
sensor bar overlay panel 2804 that contains printed circuit
board 2602. As shown, when connector 2506 is inserted into



US 9,454,501 B2

23

patch panel port 2802, 1-wire memory chip 2504 held by
retaining portion 2502 is inserted into a data reading port
2806 of overlay panel 2804. Inside the data reading port, the
upper contacts of spring contacts 2604 make firm contact
with the contact pads of 1-wire memory chip 2504, ensuring
that cable identification data will be reliably read from the
chip.

FIG. 29 is a photographic view of an intelligent patch
cable plugged into a patch panel that has been fitted with a
USB sensor bar overlay. As shown, a patch cable has been
fitted with 1-wire chip holder 2508, and a patch panel has
been fitted with an overlay panel 2902 containing USB
sensor bar circuitry. Contacts for reading data from the
1-wire chip are located in data reading ports 2904 located
above each port of the patch panel.

FIG. 30a depicts a similar 1-wire chip holding assembly
for a Lucent connector (LLC) 3002 of a fiber optic cable.
Similar to the RJ connector version illustrated in FIGS.
25-29, a 1-wire chip holder 3004 comprises an elevated
retaining portion 3010 configured to hold a 1-wire memory
chip 3006. 1-wire chip holder 3004 is designed to fit
between the L.C connector 3002 and the boot assembly 3008
of the fiber optic cable, such that when the L.C connector
3002 is inserted into the boot assembly 3008 the 1-wire chip
holder 3004 is secured on the plug. FIG. 3054 illustrates the
assembled components for this 1-wire chip holding design.

FIGS. 31 and 32 depict two different views of this 1-wire
chip holding assembly inserted into a fiber enclosure that has
been fitted with a USB sensor bar overlay. In a similar
manner to the RJ connector examples depicted in FIGS. 27
and 28, spring connectors 3102 associated with each fiber
enclosure port maintain consistent firm contact with the
contact pads of the 1-wire chip while the LC connector is
plugged into the port.

FIGS. 33a and 334 illustrate an example 1-wire chip
holding design that provides additional physical port secu-
rity in the form of a secure port blocker. FIG. 33« illustrates
an exploded view of a 1-wire chip holding assembly for an
RJ cable connector according to one or more embodiments.
Similar to previous examples, a 1-wire chip holder 3304
comprises an elevated retaining portion 3306 configured to
hold a 1-wire memory chip 3308. 1-wire chip holder 3304
is configured to slip onto the front of an RJ connector to
facilitate mounting the 1-wire memory chip to a copper
patch cable. The front of the 1-wire chip holder 3304 is also
configured to receive an RJ port blocker 3302, which
provides physical port security by mechanically locking the
RJ connector in the patch panel port. RJ port blocker 3302
is a sleeve-like mechanism configured to slide over the RJ
connector of the patch cable, encasing the cable plug while
leaving the contact portions of the cable conductors
exposed.

FIG. 334 illustrates the assembled components of the
secure assembly. When an RJ connector fitted with this
secure assembly is inserted into a patch panel port, RJ port
blocker 3302 locks the plug in the port. In order to prevent
physical tampering with the network and to provide a
physical layer of security, RJ port blocker 3302 is configured
be unlocked and removed from the port only by use of a
specialized extraction tool designed to mate with the RJ port
blocker 3302. The physical port security offered by this
assembly can prevent unauthorized removal of patch cables
or physical rerouting of network segments by unauthorized
personnel. This secure RJ connector assembly, used in
conjunction with the USB sensor bar and device manager
described above, provides both physical security of network

10

15

20

25

30

35

40

45

50

55

60

65

24

segments by virtue of the RJ port blocker 3302 as well as
electronic port security by virtue of the USB sensor bar
functionality.

FIG. 34 illustrates a fiber optic version of this secure
1-wire chip assembly for an LC connector. Similar to the
secure RJ assembly illustrated in FIGS. 334 and 335, the
secure LC assembly comprises a 1-wire chip holder 3408
having a retaining portion 3406 for holding a 1-wire
memory chip 3404. The assembly also includes an L.C port
blocker 3402 that serves a similar function to that of the RJ
port blocker 3302 described above. Specifically, when a
fiber optic LC connector outfitted with the secure RJ assem-
bly is inserted into a port of a fiber enclosure, LC port
blocker 3402 locks the L.C connector in place. Once locked,
the connector can only be removed from the port using a
specialized extraction tool matching the type of the L.C port
blocker 3402.

Although FIGS. 21-34 depict various 1-wire chip holder
assemblies as retrofittable components that can be added to
a standard copper or fiber cable plug, cables that are pre-
molded to include a 1-wire chip holder similar to those
depicted in FIGS. 21-34 are also within the scope of one or
more embodiments of this disclosure.

FIG. 35 is an example methodology 3500 for collecting
network infrastructure data. Initially, at 3502, cable identi-
fication data is read from a memory attached to a cable plug
inserted into a patch panel port. The memory can comprise,
for example, a 1-wire memory chip affixed to the plug boot
of the cable using a 1-wire chip holder. The identification
data uniquely identifies the cable plug within the context of
a network infrastructure, and can be read by a USB sensor
bar containing 1-wire chip reading circuitry. The USB
sensor bar can be an integrated component of the patch
panel, or can be a retrofittable overlay mounted to the front
of the patch panel to yield an intelligent patch panel capable
of collecting cable identification data and interfacing with a
device manager over a USB bus. At 3504, the identification
data is converted to a USB protocol. At 3506, the converted
identification data is sent to a device manager over a USB
bus. The identification data can be sent together with port
identification information indicating a patch panel port from
which the identification data was read, so that the device
manager can accurately associate the cable identification
data with the appropriate patch panel port.

FIG. 36 is an example methodology for receiving and
processing cable identification data from a USB sensor bar.
Initially, at 3602, cable identification data is received from
a USB sensor bar over a USB bus. The identification data
can be received over a direct USB connection between the
USB bus and a device manager, or can be received from the
USB bus via a USB hub.

At 3604, network infrastructure documentation is updated
based on the received cable identification data. The network
infrastructure documentation can record, for example, an
identity of each detected patch cable, an identity of which
patch panel and port number each detected patch cable is
plugged into, a record of which network branches and/or
devices are connected together, or other such network infra-
structure information.

At 3606, a determination is made regarding whether the
network monitoring system has an associated graphical user
interface. If so, the updated network infrastructure docu-
mentation is rendered on a graphical user interface. In some
embodiments, the graphical user interface can comprise a
Web-based application and can be delivered to a client
device over the Internet. The interface can convey such
information as a status of each network connection, identi-



US 9,454,501 B2

25

fication of which patch panel ports (and associated network
branches and devices) are connected together, a diagram of
the network, or other such information.

At 3610, a determination is made regarding whether the
updated network infrastructure documentation indicates an
alarm condition. In some embodiments, network conditions
that warrant alarm or notification output can be predefined in
the device manager. If the network infrastructure documen-
tation indicates that a defined alarm condition exists (e.g., a
particular cable identifier is no longer detected, indicating
that a critical cable has been unplugged; the cable identifi-
cation data indicates that two network branches that should
not be connected have been jumpered together, etc.), an
alarm or notification is generated and delivered based on the
updated network infrastructure documentation at 3612. The
alarm or notification can be delivered to specified client
devices defined in the device manager (e.g., over the Inter-
net).

In order to provide a context for the various aspects of the
disclosed subject matter, FIGS. 37 and 38 as well as the
following discussion are intended to provide a brief, general
description of a suitable environment in which the various
aspects of the disclosed subject matter may be implemented.

With reference to FIG. 37, an example environment 3710
for implementing various aspects of the aforementioned
subject matter includes a computer 3712. The computer
3712 includes a processing unit 3714, a system memory
3716, and a system bus 3718. The system bus 3718 couples
system components including, but not limited to, the system
memory 3716 to the processing unit 3714. The processing
unit 3714 can be any of various available processors. Multi-
core microprocessors and other multiprocessor architectures
also can be employed as the processing unit 3714.

The system bus 3718 can be any of several types of bus
structure(s) including the memory bus or memory controller,
a peripheral bus or external bus, and/or a local bus using any
variety of available bus architectures including, but not
limited to, 8-bit bus, Industrial Standard Architecture (ISA),
Micro-Channel Architecture (MSA), Extended ISA (EISA),
Intelligent Drive Electronics (IDE), VESA Local Bus
(VLB), Peripheral Component Interconnect (PCI), Univer-
sal Serial Bus (USB), Advanced Graphics Port (AGP),
Personal Computer Memory Card International Association
bus (PCMCIA), and Small Computer Systems Interface
(SCSID).

The system memory 3716 includes volatile memory 3720
and nonvolatile memory 3722. The basic input/output sys-
tem (BIOS), containing the basic routines to transfer infor-
mation between elements within the computer 3712, such as
during start-up, is stored in nonvolatile memory 3722. By
way of illustration, and not limitation, nonvolatile memory
3722 can include read only memory (ROM), programmable
ROM (PROM), electrically programmable ROM (EPROM),
electrically erasable PROM (EEPROM), or flash memory.
Volatile memory 3720 includes random access memory
(RAM), which acts as external cache memory. By way of
illustration and not limitation, RAM is available in many
forms such as synchronous RAM (SRAM), dynamic RAM
(DRAM), synchronous DRAM (SDRAM), double data rate
SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM),
Synchlink DRAM (SLDRAM), and direct Rambus RAM
(DRRAM).

Computer 3712 also includes removable/non-removable,
volatile/non-volatile computer storage media. FIG. 37 illus-
trates, for example a disk storage 3724. Disk storage 3724
includes, but is not limited to, devices like a magnetic disk
drive, floppy disk drive, tape drive, Jaz drive, Zip drive,

20

35

40

45

50

55

60

65

26

LS-100 drive, flash memory card, or memory stick. In
addition, disk storage 3724 can include storage media sepa-
rately or in combination with other storage media including,
but not limited to, an optical disk drive such as a compact
disk ROM device (CD-ROM), CD recordable drive (CD-R
Drive), CD rewritable drive (CD-RW Drive) or a digital
versatile disk ROM drive (DVD-ROM). To facilitate con-
nection of the disk storage 3724 to the system bus 3718, a
removable or non-removable interface is typically used such
as interface 3726.

It is to be appreciated that FIG. 37 describes software that
acts as an intermediary between users and the basic com-
puter resources described in suitable operating environment
3710. Such software includes an operating system 3728.
Operating system 3728, which can be stored on disk storage
3724, acts to control and allocate resources of the computer
3712. System applications 3730 take advantage of the man-
agement of resources by operating system 3728 through
program modules 3732 and program data 3734 stored either
in system memory 3716 or on disk storage 3724. It is to be
appreciated that one or more embodiments of the subject
disclosure can be implemented with various operating sys-
tems or combinations of operating systems.

A user enters commands or information into the computer
3712 through input device(s) 3736. Input devices 3736
include, but are not limited to, a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
joystick, game pad, satellite dish, scanner, TV tuner card,
digital camera, digital video camera, web camera, and the
like. These and other input devices connect to the processing
unit 3714 through the system bus 3718 via interface port(s)
3738. Interface port(s) 3738 include, for example, a serial
port, a parallel port, a game port, and a universal serial bus
(USB). Output device(s) 3740 use some of the same type of
ports as input device(s) 3736. Thus, for example, a USB port
may be used to provide input to computer 3712, and to
output information from computer 3712 to an output device
3740. Output adapters 3742 are provided to illustrate that
there are some output devices 3740 like monitors, speakers,
and printers, among other output devices 3740, which
require special adapters. The output adapters 3742 include,
by way of illustration and not limitation, video and sound
cards that provide a means of connection between the output
device 3740 and the system bus 3718. It should be noted that
other devices and/or systems of devices provide both input
and output capabilities such as remote computer(s) 3744.

Computer 3712 can operate in a networked environment
using logical connections to one or more remote computers,
such as remote computer(s) 3744. The remote computer(s)
3744 can be a personal computer, a server, a router, a
network PC, a workstation, a microprocessor based appli-
ance, a peer device or other common network node and the
like, and typically includes many or all of the elements
described relative to computer 3712. For purposes of brev-
ity, only a memory storage device 3746 is illustrated with
remote computer(s) 3744. Remote computer(s) 3744 is
logically connected to computer 3712 through a network
interface 3748 and then physically connected via commu-
nication connection 3750. Network interface 3748 encom-
passes communication networks such as local-area networks
(LAN) and wide-area networks (WAN). LAN technologies
include Fiber Distributed Data Interface (FDDI), Copper
Distributed Data Interface (CDDI), Ethernet/IEEE 802.3,
Token Ring/IEEE 802.5 and the like. WAN technologies
include, but are not limited to, point-to-point links, circuit
switching networks like Integrated Services Digital Net-



US 9,454,501 B2

27
works (ISDN) and variations thereon, packet switching
networks, and Digital Subscriber Lines (DSL).

Communication connection(s) 3750 refers to the hard-
ware/software employed to connect the network interface
3748 to the system bus 3718. While communication con-
nection 3750 is shown for illustrative clarity inside computer
3712, it can also be external to computer 3712. The hard-
ware/software necessary for connection to the network inter-
face 3748 includes, for exemplary purposes only, internal
and external technologies such as, modems including regu-
lar telephone grade modems, cable modems and DSL
modems, ISDN adapters, and Ethernet cards.

FIG. 38 is a schematic block diagram of a sample com-
puting environment 3800 with which the disclosed subject
matter can interact. The sample computing environment
3800 includes one or more client(s) 3802. The client(s) 3802
can be hardware and/or software (e.g., threads, processes,
computing devices). The sample computing environment
3800 also includes one or more server(s) 3804. The server(s)
3804 can also be hardware and/or software (e.g., threads,
processes, computing devices). The servers 3804 can house
threads to perform transformations by employing one or
more embodiments as described herein, for example. One
possible communication between a client 3802 and servers
3804 can be in the form of a data packet adapted to be
transmitted between two or more computer processes. The
sample computing environment 3800 includes a communi-
cation framework 3806 that can be employed to facilitate
communications between the client(s) 3802 and the server(s)
3804. The client(s) 3802 are operably connected to one or
more client data store(s) 3808 that can be employed to store
information local to the client(s) 3802. Similarly, the
server(s) 3804 are operably connected to one or more server
data store(s) 3810 that can be employed to store information
local to the servers 3804.

The above description of illustrated embodiments of the
subject disclosure, including what is described in the
Abstract, is not intended to be exhaustive or to limit the
disclosed embodiments to the precise forms disclosed.
While specific embodiments and examples are described
herein for illustrative purposes, various modifications are
possible that are considered within the scope of such
embodiments and examples, as those skilled in the relevant
art can recognize.

In this regard, while the disclosed subject matter has been
described in connection with various embodiments and
corresponding figures, where applicable, it is to be under-
stood that other similar embodiments can be used or modi-
fications and additions can be made to the described embodi-
ments for performing the same, similar, alternative, or
substitute function of the disclosed subject matter without
deviating therefrom. Therefore, the disclosed subject matter
should not be limited to any single embodiment described
herein, but rather should be construed in breadth and scope
in accordance with the appended claims below.

In addition, the term “or” is intended to mean an inclusive
“or” rather than an exclusive “or.” That is, unless specified
otherwise, or clear from context, “X employs A or B” is
intended to mean any of the natural inclusive permutations.
That is, if X employs A; X employs B; or X employs both
A and B, then “X employs A or B” is satisfied under any of
the foregoing instances. Moreover, articles “a” and “an” as
used in the subject specification and annexed drawings
should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form.

25

35

40

45

28

What has been described above includes examples of
systems and methods illustrative of the disclosed subject
matter. It is, of course, not possible to describe every
combination of components or methodologies here. One of
ordinary skill in the art may recognize that many further
combinations and permutations of the claimed subject mat-
ter are possible. Furthermore, to the extent that the terms
“includes,” “has,” “possesses,” and the like are used in the
detailed description, claims, appendices and drawings such
terms are intended to be inclusive in a manner similar to the
term “comprising” as “‘comprising” is interpreted when
employed as a transitional word in a claim.

What is claimed is:

1. A system for monitoring a network architecture, com-
prising:

an overlay panel configured to mount with respect to a

bank of cable ports of a patch panel, wherein the

overlay panel comprises:

a sensor comprising electrical contacts that are located
in proximity to a cable port, of the bank of cable
ports, while the overlay panel is mounted with
respect to the bank of cable ports, wherein the
electrical contacts are configured to, in response to
insertion of a cable plug having an attached memory
device into the cable port, electrically connect to
respective contact pads of the memory device, and
wherein the sensor is configured to read, via the
electrical contacts, cable identification data from the
memory device attached to the cable plug;

a universal serial bus (USB) interface configured to
connect to a USB cable; and

a controller configured to send the cable identification
data to a network management device via the USB
interface.

2. The system of claim 1, wherein the memory device
comprises a 1-wire chip, and the sensor further comprises a
1-wire chip reading sensor configured to read the cable
identification data from the 1-wire chip.

3. The system of claim 1, wherein the sensor further
comprises at least one mechanical detection mechanism
configured to distinguish between insertion of a first cable
plug having the memory device attached thereto and inser-
tion of a second cable plug that does not have the memory
device attached thereto.

4. The system of claim 1, wherein the overlay panel
further comprises an inter-integrated circuit (12C) bus con-
figured to convey control signaling and the cable identifi-
cation data between the controller and the sensor.

5. The system of claim 4, wherein the overlay panel
further comprises a conversion component configured to
convert the cable identification data to a USB protocol prior
to sending the cable identification data to the network
management device via the USB interface.

6. The system of claim 5, wherein the conversion com-
ponent comprises a serial-to-USB converter configured to
covert the cable identification data from a serial protocol of
the controller to the USB protocol.

7. The system of claim 1, wherein the overlay panel is
compatible with one or more mechanical port security
devices.

8. The system of claim 1, wherein the controller is further
configured to update port configuration data for a network
connected to the patch panel based on the cable identifica-
tion data.

9. The system of claim 8, wherein the controller is further
configured to send the port configuration data to the network
management device in response to a request for the port



US 9,454,501 B2

29

configuration data received from the network management
device via the USB interface.

10. The system of claim 8, wherein the controller is
further configured to determine whether the cable identifi-
cation data has changed for the cable port since a previous
read operation by the sensor, and to send updated port
configuration data to the network management device via
the USB interface in response to a determination that the
cable identification data has changed.

11. A method for monitoring a network architecture,
comprising:

detecting, by a control device of an overlay panel

mounted over a bank of cable ports of a patch panel,
insertion of a cable plug into a cable port of the bank
of cable ports;

in response to the detecting, reading, by the control device

via electrical contacts mounted to the overlay panel,
cable identification information from a memory device
affixed to the cable plug, wherein the electrical contacts
are located in proximity to the cable port and oriented
to cause the electrical contacts to electrically connect to
respective contact pads of the memory device in
response to the insertion of the cable plug into the cable
port; and

sending, by the control device, the cable identification

information directed to a network management device
via a universal serial bus (USB) cable connected to the
overlay panel.

12. The method of claim 11, wherein the reading com-
prises reading the cable identification information from a
1-wire chip.

13. The method of claim 11, wherein the detecting com-
prises determining that the cable plug includes the memory
device affixed to the cable plug.

14. The method of claim 11, further comprising convey-
ing the cable identification information from the memory
device to the control device via an inter-integrated circuit
(I2C) bus of the overlay panel.

15. The method of claim 14, further comprising convert-
ing the cable identification information from a serial proto-
col of the control device to a USB protocol prior to sending

10

20

25

30

35

40

30

the cable identification information toward the network
management device via the USB cable.

16. The method of claim 11, further comprising updating,
by the control device, port configuration data for a network
connected to the patch panel based on the cable identifica-
tion information.

17. The method of claim 11, wherein the sending com-
prises sending the cable identification information in
response to request data received from the network man-
agement device via the USB cable.

18. The method of claim 16, further comprising:

detecting, by the control device, that the cable identifica-
tion information has changed for the cable port since a
previous read operation performed by the control
device; and

sending updated port configuration information directed
to the network management device via the USB cable
in response to the detecting.

19. A system, comprising:
means for mounting an overlay panel with respect to a
bank of cable ports of a patch panel;

means for detecting insertion of a cable plug into a cable
port of the bank of cable ports;

means for reading, in response to the detecting via elec-
trical contacts mounted to the overlay panel, cable
identification data from a memory chip affixed to the
cable plug, wherein the electrical contacts are located in
proximity to the cable port and positioned to cause the
electrical contacts to electrically interface to respective
contact pads of the memory device in response to the
insertion of the cable plug into the cable port; and
means for conveying the cable identification data toward
anetwork management device via a universal serial bus
(USB) cable attached to the overlay panel.
20. The system of claim 19, wherein the means for
reading comprises means for reading the cable identification
information from a 1-wire chip.

#* #* #* #* #*



